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 Considering the content of history of mathematics textbooks, it’s evident that their emphasis is primarily on the 

illustrative aspects of recurring numerical sequences, with a particular focus on the Fibonacci sequence. 

Unfortunately, this limited approach results in the neglect of other sequences akin to the Fibonacci numbers, thus 

rendering the subject challenging for teaching purposes. This study aims to address this gap by offering a concise 
exploration of the combinatorial aspects of the Padovan numbers, specifically through the concept of a board as 

initially examined by mathematicians. In line with the research methodology of didactic engineering and the 

teaching theory of the theory of didactic situations, two problem situations have been developed, centered on the 

Padovan combinatorial model, thereby contributing to the enrichment of mathematical education within initial 

teacher training programs. Within this framework, various strategies are introduced that rely on visualization and 
counting, with the objective of illustrating specific mathematical identities suitable for potential classroom 

applications. 
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INTRODUCTION 

The discussion of mathematical curiosities and illustrative content within the realm of the Fibonacci sequence is heavily 

dominated by authors of history of mathematics textbooks (Burton, 2007). Regrettably, many of these authors often neglect to 

consider the profound mathematical contributions and pioneering work of the renowned Leonardo Pisano (1170-1217), the 

creator of the Fibonacci sequence. 

This oversight becomes apparent when examining the work of Gullberg (1997), which delves into the famous problem of 

“immortal rabbits,” without delving into the relevant mathematical contributions or the latest evolutionary studies related to 

these numerical patterns. It’s crucial to recognize the historical context that propels the epistemological and evolutionary 

advancement of specific mathematical entities and, more broadly, a myriad of recurring numerical sequences and their 

corresponding mathematical theories. 

Generally, there is a discernible interest in the diverse approaches and generalizations of recurring numerical sequences, with 

the Fibonacci sequence taking the spotlight due to its contemporary significance. This sequence, which belongs to the second 

order, exhibits numerous relationships with the golden number Ø≈1.61. One such relationship stems from one of the roots of the 

characteristic the Fibonacci polynomial, which equals the value of the golden number. Further associations with the Fibonacci 

sequence are explored in Dunlap’s (1997) work, spanning from the description of plant growth to the development of computer 

algorithms for data retrieval. 

In contrast, the Padovan sequence, bearing the name of Italian architect Richard Padovan (born in 1935), constitutes a third-

order recursive numerical sequence. One of the solutions to its characteristic polynomial is the plastic number, with a value of 

Ψ≈1.32. This underpins a clear connection between the Padovan sequence and the plastic number, also referred to as the radiant 

number (Padovan, 1994; Vieira, 2020). 

Marohnic et al. (2013) point out that the Padovan’s exploration was built upon the groundwork of the architect Hans van der 

Laan (1904-1991), who stumbled upon the discovery of a novel irrational number–the plastic number. However, it’s worth 

mentioning that previous research credits the study of this number to Gérard Cordonnier (1907-1977), and thus, this sequence is 

also known as the Hans van der Laan or Cordonnier sequence (Alves & Catarino, 2022). 
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Studies examining the properties of the golden number, also known as the divine proportion, have led to the definition of 

morphic numbers. These numbers only possess two solutions, one being the plastic number and the other the golden number. 

This highlights the connection between the two sequences: Fibonacci and Padovan (Aarts et al., 2001; Ferreira, 2015). 

Given this intricate interplay between these numerical sequences, the impetus emerged to explore other sequences, fostering 

their respective epistemological and mathematical advancements. The unprecedented evolution of the Padovan and the Perrin 

sequences is evident, offering a unique opportunity for research participants. This substantiates the drive to create a pedagogical 

proposal for delving into the Padovan and the Perrin sequences, with a focus on generalization, complexity, and the combinatorial 

model of these numerical entities. 

Considering these considerations, there is an imperative to create instructional scenarios that align with students’ needs. 

Consequently, mathematics educators face the challenge of making their lessons more engaging, igniting students’ interest in 

constructing mathematical concepts through didactic situations designed to evoke curiosity. In response to this necessity, among 

the theories of mathematics didactics, which originate from France, we have sought one that not only scrutinizes obstacles within 

the teaching process but also explores didactic and cognitive aspects. This quest led us to the theory of didactic situations, as 

conceptualized by Brousseau (1986). The selection of the research methodology follows the same French perspective, aligning 

with didactic engineering, a framework developed by Artigue (1988) and further elaborated upon by Artigue and Glorian (1991). 

This methodology stems from Brousseau’s (1986) insights into didactic practices. 

Didactic engineering serves as a structured approach to the knowledge underpinning a given educational activity. It 

commences with the formulation of hypotheses, followed by their analysis. This approach facilitates pedagogical innovation, 

marked by the design of research procedures for use in the classroom. By introducing various didactic situations to students, 

providing them opportunities for constructing knowledge, this methodology proves instrumental in overcoming obstacles within 

the realm of mathematics. 

In this context, it is of utmost concern for educators and researchers in initial teacher training programs who introduce the 

study of the Padovan sequence in the history of mathematics course. Their intention is to critically assess and adapt their teaching 

practices. This illustrates the enriching contribution of French didactics to the field of mathematics didactics, particularly in 

connection with the study of mathematical objects and their relationships as experienced within the classroom. 

Drawing on the works of Benjamin and Quinn (2003) and Spivey (2019) concerning the combinatorial model of the Padovan 

sequence, the research is guided by the following question: “How can we delve into the epistemological and evolutionary 

trajectory of the Padovan sequence and enhance its combinatorial model?” This central query underpins the overarching goal of 

this research, which is to investigate the combinatorial model of the Padovan sequence, scrutinizing its epistemological and 

evolutionary development within the framework of the theory of didactic situations. 

Consequently, a problem situation, informed by Brousseau’s (1986) didactic situation theory, is developed around the 

combinatorial model of the Fibonacci sequence, aiming to contribute to initial teacher training programs and mathematics 

educators alike. 

PRELIMINARY ANALYSES 

In the initial phase of this study, an extensive bibliographic exploration was conducted, focusing on Fibonacci’s combinatorial 

model and the concept of a board. This groundwork was essential to pave the way for the investigation into the Padovan’s 

combinatorial model. The search encompassed works within the domains of pure mathematics and the history of mathematics, 

enabling the examination of the sequence’s origins, with particular attention to key elements such as the concept of a board, 

mathematical properties, and related concepts. This process served to compile essential epistemological elements that could be 

translated into instructional content for students. Additionally, a comprehensive review of literature pertaining to the didactic 

engineering research methodology and the teaching theory of didactic situation theory was carried out. 

Among the pertinent studies focused on mathematical concepts related to numbers and Padovan, notable works include 

those by Benjamin and Quinn (2003), Craveiro (2004), and Koshy (2001, 2019, 2014). These authors conducted extensive research 

on combinatorial approaches and interpretations related to sequences such as Fibonacci, Lucas, Jacobsthal, and Pell, alongside 

parallel studies exploring the extension of these sequences. Notably, we emphasize the foundational idea of tiling and 

chessboards, as inspired by the work of Spreafico (2014), which is primarily concerned with combinatorial interpretations in the 

realm of recurring numerical sequences. 

In the context of mathematics education, noteworthy studies and research efforts that contribute to this work include da Silva 

(2019) and Oliveira (2015). These studies examine the application of the didactic engineering research methodology to the study 

of analytical geometry, operations with rational numbers, and the introduction of initial activities for the study of probability and 

calculus. Additionally, the book authored by Blum et al. (2016) delves into the European tradition of mathematics didactics. 

Within this framework, the proposed initiative revolves around the development of mathematical properties and definitions, 

with a specific focus on the Padovan and the Perrin sequences. The approach involves employing didactic teaching scenarios for 

students in initial mathematics training. This educational endeavor entails an in-depth exploration of the mathematical-epistemic 

domain of these numbers, emphasizing their respective combinatorial models and addressing generalization and 

complexification. Subsequently, didactic teaching situations are designed and executed in the classroom, offering a means to 

scrutinize and compare the anticipated outcomes with the empirical results. As such, this research incorporates the didactic 
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engineering research methodology and the teaching theory of didactic situation theory, fostering an environment, where research 

participants can explore novel pedagogical approaches, in tandem with an exploration of the mathematical object itself. 

DIDACTIC ENGINEERING & THEORY OF DIDACTIC SITUATIONS 

Certainly, the process of teaching and learning mathematics is far from trivial for many students, demanding alternative 

approaches to stimulate their thinking and foster interest. In this context, during the mid-1980s, a novel research methodology 

emerged in France with the dual purpose of refining prevailing educational practices and deepening our comprehension of 

mathematical learning events. 

This gave rise to didactic engineering, a research methodology characterized by its similarity to the work of an engineer. As 

noted by Artigue (1988), the practice aligns with that of a technical-scientific engineer, leveraging knowledge within their domain 

and necessitating the use of more intricate elements than those distilled by science alone. Importantly, didactic engineering 

facilitates an examination of existing classroom practices, offers resources for teacher training, and delves into the analysis of both 

teacher activity and the didactic transposition of subject matter (Chevallard, 1991). 

In the context of exploring the role of the teacher in mathematics didactics, the focus extends to the teaching of the Padovan’s 

combinatorial model, with a particular emphasis on the initial training of mathematics educators. Consequently, this research 

leans on didactic engineering, which is delineated as either micro-engineering or macro-engineering. The former presents a more 

focused perspective on classroom practices, while the latter assumes a broader, more holistic view. For this work, micro-

engineering is employed with the objective of effectively teaching the mathematical object of interest. Artigue (1995) underscores 

that the application of this research methodology is somewhat intricate due to the challenges involved in practically developing 

classroom-derived data. 

Didactic engineering empowers the analysis of prevailing classroom phenomena and affords resources for teacher training, 

thereby facilitating an assessment of the teacher’s role and their capacity to transpose didactic content derived from scientific 

knowledge. Within the realm of French mathematics didactics, this research further enriches the scientific conditions and 

classroom experiments. As such, we have approached the combinatorial study of the Padovan sequence by employing didactic 

engineering methodology in tandem with the theory of didactic situations in the context of initial training courses for mathematics 

educators. This approach places significant emphasis on both the training and learning experiences of mathematics teachers and 

the evolutionary trajectory of the Padovan sequence. 

The research is structured into four distinct phases: preliminary analysis, design and a priori analysis, experimentation, and a 

posteriori analysis and validation. It harmonizes theory with practice. The preliminary analysis stage identifies issues related to 

teaching and learning, conducting an extensive review of the literature, encompassing relevant works and texts related to the 

mathematical object under examination. This phase culminates in the enumeration of epistemological, cognitive, and didactic 

elements (Artigue, 1995). 

The a priori conception and analysis phase entails the selection of variables (micro didactic or macro didactic, as discussed 

further), culminating in the development of teaching scenarios grounded in the epistemic-mathematical domain. The aim is to 

fulfill the research objectives. Almouloud (2007) aptly states that, 

“a priori analysis is extremely important because the success of the problem situation depends on its quality; in addition, 

it allows the teacher to control the performance of the students’ activities, and to identify and understand the observed 

facts. In this way, the conjectures that emerge can be considered, and some can be the subject of scientific debate” (p. 

176). 

In experimentation, the teaching situations developed in the previous phase are applied and the data collected must be 

recorded (Alves, 2016).  

Lopes et al. (2018) state that, 

“Initially, it consists of the period of application and experimentation with the previously planned activities, collecting data 

on the investigation. Secondly, it refers to the analysis of the results obtained in the research. This phase is based on the 

analysis of all the data obtained in the experimentation during the teaching sessions, as well as productions inside or 

outside the classroom” (p. 164). 

Furthermore, it is imperative to establish a didactic contract that delineates the roles and responsibilities of both the teachers 

and the research participants. It is worth noting that there are instances, where the didactic contract is breached due to student 

disinterest in the learning process. 

Lastly, the ultimate phase involves a posteriori analysis and validation, which scrutinizes the data collected in the preceding 

phase, comparing it with the a priori analysis, thereby validating the previously formulated hypotheses. This validation can be 

conducted internally, focusing solely on the participating students, or externally by comparing participants who employed the 

research methodology with those who did not (Laborde, 1997). 

During the application phase, as Almouloud (2007) suggests, certain adjustments and corrections may be necessary. 

Subsequently, the results obtained are thoroughly evaluated, allowing didactic knowledge to contribute to content transmission. 
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This is succeeded by a validation of the elements during the experimentation phase, where the outcomes discussed are analyzed 

to determine if engineering has evolved. 

To support the various phases of didactic engineering, a teaching methodology is adopted that provides students with a 

platform for learning and knowledge exchange. This methodology is rooted in the theory of didactic situations, which centers 

around didactic teaching scenarios. It encourages students to engage in these scenarios, fostering investigation throughout the 

teaching and learning process in mathematics (Brousseau, 1986). A teaching situation, according to Brousseau (2006), is “the 

model of interaction between a subject and a specific environment that generates particular knowledge” (Brousseau, 2006, p. 19). 

Thus, we must acknowledge the presence of the milieu, representing the environment in which the didactic situation is applied. 

The theory of didactic situations comprises four key situations: action, formulation, validation, and institutionalization. 

In the action situation, as described by Alves (2016), participants encounter the proposed problem situation for the first time. 

This scenario comprises a set of questions characterized by direct and concise statements. Participants endeavor to solve these 

problems by drawing upon their existing knowledge. The formulation situation involves participants converting their ideas into a 

more technical and formal language, with the aim of formulating theorems and properties (Vieira et al., 2019). The validation 

situation is centered on verifying the solutions presented in the action phase, often through discussions and peer assessments. 

Finally, the institutionalization situation entails the teacher’s analysis of the resolutions put forward, elucidating the core objective 

of the problem situation (Alves, 2019). 

Subsequently, the first phase of didactic engineering commences, involving the establishment of a theoretical framework 

surrounding the object of study and the delineation of the respective epistemic-mathematical domain. 

EPISTEMIC-MATHEMATICAL FIELD 

The study of recurring numerical sequences is often centered around the Fibonacci sequence, emphasizing its historical 

significance while disregarding other crucial mathematical contributions (Burton, 2007). Consequently, numerous other recurring 

numerical sequences remain relatively unknown and are often excluded from initial teacher training courses, such as the Padovan 

sequence. 

Given this educational landscape, exploring the combinatorial interpretation of the Padovan sequence holds great potential 

for enhancing mathematics education. It enables a more meaningful approach to teaching, facilitated through the application of 

didactic engineering. According to Zborowski and Pigatto (2018), didactic engineering emerged from discussions within the field 

of mathematics didactics, driven by the need for improvements in mathematics education in French schools. 

Mathematics education should be about fostering lifelong learning, not merely achieving prescribed objectives, or executing 

algorithms devoid of deeper understanding. There is a clear imperative to adopt methodologies that encourage critical reflection 

on teaching practices, consequently enhancing the learning process. It is within this context that didactic engineering offers 

valuable guidance for exploring the mathematical concept of the Padovan sequence. This methodology is complemented by the 

teaching theory of didactic situation theory, further enriching research guided by didactic engineering. 

Didactic situation theory plays a pivotal role in the analysis of classroom dynamics, empowering teachers to embrace an 

investigative approach to their teaching. It places the student at the center of the learning process, emphasizing the need to 

consider the initial training of mathematics teachers. This involves introducing research methodologies and teaching theories that 

can be effectively applied in their future teaching practices. 

The Padovan sequence is of third order, with recurrence given by Pn=Pn-2+Pn-3, n≥3, with P0=P1=P2=1, where Pn is the nth term of 

the Padovan sequence. Considering this, an in-depth exploration of these numerical sequences is undertaken, with a particular 

focus on a combinatorial approach rooted in the work of Vieira et al. (2022). 

A board consists of an arrangement of squares, referred to as cells, each of which is assigned a unique enumeration 

corresponding to its position. Such a board is referred to as an n-board (Spreafico, 2014). Building upon this foundational 

definition, we can delve into the Fibonacci combinatorial model, which investigates the count of ways (fn) of covering a 1×n board 

with 1×1 squares and 1×2 dominoes is equal to fn=Fn+1 (Spivey, 2019). 

As a result of the discussions elucidated by Benjamin and Quinn (2003) and Koshy (2001), who dissect the combinatorial 

behavior of the Fibonacci sequence through tiling, a specific rule is formulated for the theorem associated with the Padovan tiling. 

Applying a similar concept, while introducing the notion of an extended domino, defined as a 1×3 rectangle, a black square 

measuring 1×1, and the traditional 1×2 domino, any Padovan tiling can be constructed through the arrangement of these defined 

shapes. 

Definition 1. By considering the inclusion of an extended domino, defined as a rectangle with dimensions of 1×3, a black 

square with dimensions of 1×1, and the classic 1×2 domino, any Padovan tiling can be constituted through the strategic 

arrangement of these prescribed shapes. The purpose of the black square is to complement the vacant tiles, subject to the rule 

that it is inserted solely at the commencement of the tiling and appears only once in each tile. These specific rules are established 

for the Padovan tiling theorem. 

Thus, an n-board is considered, incorporating the following tile shapes: a 1×1 black square, blue 1×2 dominoes, and gray 1×3 

extended dominoes, all of which are assigned a weight of one. In Figure 1, on the left-hand side, various illustrative examples are 

provided to demonstrate the filling of the n-board corresponding to the Padovan sequence. On the right, you will find the terms 

corresponding to the Padovan numbers. The term represents the count of tile shapes within the n-board, following the rules, which 

ultimately defines the ratio: Pn=Pn, n≥0. The following is fixed P0=1=P0, when there is no board of size 1×n, and P1=1=P1, when there 
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is only one black square. This is the exception to the rule, since in this case, the black square will be the only figure, being at the 

beginning and therefore at the end (simultaneously). 

Theorem 1. For n≥0, the possible tiling of a 1×n board with black square, blue domino and gray extended domino tiles is given 

by (Vieira et al., 2022): Pn=Pn, where Pn is the number of ways to fill the 1×n board and Pn is the nth term of the Padovan sequence. 

The demonstration of the theorem can be seen in the work of Vieira et al. (2022).   

Some of the Padovan’s identities are associated with the discussions arising from the interpretation of Fibonacci in Benjamin 

and Quinn (2003). 

Identity 1. The number of pieces on a board of size n that use at least one domino is Pn or Pn-1, depending on the value of n. 

Identity 2. The number of pieces on a board of size n that use at least one extended domino is Pn-1. 

Moreover, a careful curation of identities will be made for an activity proposal that integrates the theory of didactic situations. 

This activity aims to delve into the combinatorial interpretation of the Padovan sequence by scrutinizing the logical and intuitive 

reasoning employed by students in their preliminary mathematics courses. 

DESIGN & A PRIORI ANALYSIS OF TEACHING SITUATIONS 

This section encompasses the development of two problem situations, which will be scrutinized through the lens of micro-

didactic variables. This examination aligns with the principles of didactic engineering, as described by Almouloud (2007). 

Nonetheless, the groundwork laid out in the previous section encompasses an investigation of the epistemic-mathematical 

domain. This exploration offers an opportunity to analyze the Padovan’s combinatorial interpretation from the perspectives of 

epistemology, cognition, and didactics within the context of initial mathematics teacher training. This analysis sets the stage for 

an in-depth examination of the didactic situations, constructed as problem situations, and grounded in the theory of didactic 

situations. These scenarios enable an evaluation of the methodological approaches and pedagogical conceptions addressed. 

In the formulation of problem situation 1 and situation 2, we will delve into the didactic variables related to the content 

previously outlined in the epistemic-mathematical field:  

• notion of a board (Spreafico, 2014), 

• the Fibonacci combinatorial model (Benjamin & Quinn, 2003), 

• rules for configuring the pieces in the Padovan’s combinatorial interpretation (see definition 1), 

• the Padovan’s combinatorial model (see theorem 1), and 

• Identity 1 and identity 2. 

 

Figure 1. The Padovan tiling (adapted from Vieira et al., 2022) 
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Problem Situation 1. 

Based on the studies indicated by the Padovan’s combinatorial approach, seen in definition 1 and theorem 1, what is the 

number of pieces on a board of size n that use at least one domino? 

Action phase  

In this initial phase, students should revisit their prior knowledge, specifically focusing on the foundational concepts 

surrounding the notion of a board, as elucidated by Spreafico (2014), and the Padovan’s combinatorial model. It is advised that 

students reacquaint themselves with the work of Benjamin and Quinn (2003), which offers a comprehensive combinatorial 

approach to Fibonacci, along with an examination of the initial identities presented in this work. This approach is expected to 

mitigate potential challenges and facilitate a smooth transition to the formulation phase. Ultimately, students should aim to grasp 

the essence of definition 1 and theorem 1, thereby acquiring a comprehensive understanding of the Padovan’s combinatorial 

framework, enabling them to progress to the formulation phase. 

Formulation phase 

The formulation phase necessitates careful observation and interpretation of the Padovan tiles. Specifically, students should 

focus on identifying instances, where at least one domino is incorporated. It is essential for students to discern that when the value 

of n is divisible by two, the count of tiles is determined to be Pn. For n divisible by three or for n-1 divisible by three, it is necessary 

to subtract one unit from the value of Pn. Thus, according to the value of n, the number of tiles will be Pn or Pn-1. 

Validation phase 

Validation should be divided into cases: 

Case 1. If n is divisible by two, then there will always be at least one domino, so the number of pieces will be Pn.  

Case 2. If n is divisible by three, then there will be a case, where you do not use dominoes, so the number of pieces will be Pn-1. 

Case 3. If n-1 is divisible by three, then there will be a case, where you do not use the dominoes, so the number of pieces will 

be Pn-1. 

Institutionalization phase 

The institutionalization phase plays a crucial role in validating the insights garnered during the problem-solving process. The 

teacher’s role is to facilitate a discussion that encompasses both accurate conjectures and any misconceptions that may have 

arisen. At this juncture, the teacher reassumes a central position in the activity and underscores the primary goal of the proposal, 

which is to derive identity 1. 

Problem Situation 2 

Building upon the discussions in problem situation 1, the second problem situation challenges students to determine the 

number of pieces on a board of size n that incorporate at least one extended domino. 

Action phase 

Much like in problem 1, students are expected to draw upon their prior knowledge concerning the notion of a board defined 

by Spreafico (2014), the combinatorial models of Padovan and Fibonacci, as well as the various identities elucidated by Benjamin 

and Quinn (2003). Given the similarity of this activity to the preceding problem situation, any potential obstacles should be 

minimal. With definition 1 and theorem 1 as their foundation, students should embark on the task of constructing the initial 

Padovan tiles. 

Formulation phase  

Following the construction of the Padovan board for the initial values, students should scrutinize the cases in which at least 

one extended domino is present. This phase differs from the previous activity in that it emphasizes that the value of n does not 

affect this aspect of the problem. Thus, the number of the Padovan tiles with at least one extended domino will be Pn-1, since the 

value is always one unit greater than that contained in the Padovan tiling. 

Validation phase 

Validation should be divided into cases. For identity validation, you have the following cases:  

Case 1. If n is even, then there will be a case in which the domino is not used, so the number of pieces will be Pn-1.  

Case 2. If n is odd, then there will be a case, where you do not use dominoes, so the number of pieces will be Pn-1. 

Institutionalization phase 

During this phase, the teacher assumes a central role and engages the students in a discussion of their mathematical analyses. 

Furthermore, the primary objective of the activity is clarified, which is to derive identity 2. For a better understanding of the 

identities seen, look at Table 1, where one represents the black square of size 1×1, two represents the blue domino of size 1×2 and 

three represents the gray extended domino of size 1×3. Based on theorem 1, it was possible to perform the Padovan’s 

combinatorial interpretation for the first terms. 
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The research has provided a platform for an in-depth exploration of the combinatorial aspects of the Padovan’s numbers and 

has successfully rekindled an examination of mathematical identities. This endeavor was accomplished by employing the didactic 

situation theory’s teaching framework and the didactic engineering research methodology. Through this marriage of pedagogical 

theory and research methodology, two problem scenarios involving the Padovan’s combinatorial model have been meticulously 

developed. These scenarios now offer pedagogical strategies that hold promise for application in initial teacher training programs, 

catering to the study of mathematics’ historical context. 

It’s worth noting that the remaining phases of didactic engineering remain unaltered. The study has considered the potential 

behaviors exhibited by students and contemplated any epistemological hurdles that might surface during the classroom 

implementation. 

CONCLUSIONS 

Mathematical knowledge plays a pivotal role in comprehending various subjects within the academic realm. Consequently, it 

becomes imperative to tap into students’ intuitive faculties during their initial educational journey, enabling them to grasp the 

subject matter and its practical applications (Masolanorma & Allevato, 2019). 

Hence, it becomes necessary to shift away from the mere execution of algorithms as problem-solving tools since this approach 

often hinders students from truly grasping the underlying significance of the material they are learning. It’s important to note that 

an algorithm is defined as “a set of meticulously outlined, step-by-step instructions to be followed by the student until the desired 

outcome is achieved” (de Araújo, 2020, p. 22). 

Rocha and Aguiar (2012) further emphasize the need for an instructional paradigm shift, incorporating pedagogical knowledge 

into the training processes. This amalgamation of theoretical knowledge and effective teaching methods contributes significantly 

to enhancing students’ comprehension and learning experience. 
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