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 GeoGebra is a dynamic software that is frequently used and of increasing importance in mathematics teaching 
processes in our digital age. Accordingly, in this study a new perspective has been brought to the proofs of the 

“two square difference identity” expressed for the square, which is a flat polygon, made with different approaches. 

With side lengths a, b, and a>b, it has been shown that the identity given by the equation (difference of area) a2-

b2=(a-b)(a+b) is true for other regular polygons as well. In the study, direct proof method was used within the 

framework of the principle of conservation of measure, which is one of the basic principles of geometry teaching. 
GeoGebra program, which is a dynamic geometry software, was preferred for drawing geometric shapes used in 

proofs. In order to generalize the number n, a different fragmentation technique was preferred to the proofs made 

using different drawings for equilateral triangle and square, which are the simplest regular polygons. It has also 

been shown that this identity is true for circles viewed as polygons with an infinite number of sides. 

Keywords: association, geometry teaching, identities, difference of two squares, visualization, dynamic 

geometry software, GeoGebra 
 

INTRODUCTION 

Visualization & Geometry Education 

Visualization is one of the prominent concepts in teaching geometric concepts and expressing algebraic concepts with 

geometric shapes. Thanks to visualization, geometric thinking comes to the fore. Duval (1998) evaluates geometric thinking in a 

three-stage cognitive process: Visualization, formation, and reasoning. The first step of this cognitive process, visualization, is the 

visual representation of geometric expressions or the intuitive or experimental exploration of a complex geometric condition. As 

a matter of fact, as Kose (2008) states, most of the geometry research are based on the visualization of geometric concepts by 

drawing their shapes and making some generalizations based on these visuals. Visualization plays highly important role in 

discovering mathematical concepts and revealing the relationships between these concepts (Hamersma, 2002). For this reason, 

visualization is frequently used in mathematics education. One reason for this can be thought of as the complex structure of 

mathematics. Because visualization allows to reduce complexity while dealing with a large amount of information (Rösken & 

Rolka, 2006). 

Thanks to visualization, many skills can be gained in relation to mathematics itself, to other concepts or to daily life. National 

Council of Teachers of Mathematics (NCTM, 2000), an international organization on this subject, stated that the subject areas of 

mathematics are not independent from each other, on the contrary, it is an integrated field of study. In addition, similar results 

and comments can be found in the literature. Yulianto et al. (2019) expressed associating with visualizations as a kind of skill that 

helps to establish connections between different mathematical concepts. Putri and Santosa (2015) describe the ability to relate, 

which is closely related to visualization, as the ability to connect mathematical concepts with the learner’s daily life or other 

mathematical concepts. Again, According to Yulianto et al. (2019) visualization in mathematics education plays an important role 

in the effort to solve problem situations encountered in daily life, and with this feature, mathematics education and visualization 

lead to the emergence of the ability to relate. 

Visualization plays an important role in concretizing the abstract structure of mathematics in the mind and creating mental 

schemas. Visualizations, which are frequently used in mathematics education, aim to concretize some abstract mathematical 

concepts that are difficult to understand and to increase the level of interaction with these concepts (Liang & Sedig, 2010). Ozdemir 

et al. (2005) stated that the use of visualization in the teaching processes, which allows students to see details better in the 

education system, will contribute to a better understanding of mathematics and increase success in mathematics. English and 
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Watters (2005) stated that problems solved using visuals are important in developing metacognitive and critical thinking skills. 

Borromeo-Ferri (2006) states that mathematical results should be reconciled with real situations using visuals and turned into real 

results. Presmeg (2006) and Stylianou and Silver (2004) stated that visuals, which have an important place in thinking processes, 

have an important contribution to learning and understanding. Rahim and Siddo (2009) stated that visual thinking and 

visualization should not only be limited to the field of geometry but should also be used to make sense of mathematical processes 

and concepts.  

Visuals and visualizations are frequently used while proving the propositions put forward in mathematics. While the proof 

processes were carried out intensively with algebraic expressions in the past, today they are also carried out with visuals together 

with technological developments. At this point, Hanna and Williers (2008) stated that proofs in mathematics are generally done 

algebraically, that many students do not fully understand the reason for these proofs, and that visualization supports the proof 

process at this point. In the 20th century, which is a recent period, the habit of drawing in the proof process has decreased and 

proofs have been perceived only as a set of algebraic operations. In recent times, as we approach today, “verbal proofs” has 

become important and has been featured in scientific journals a lot with visuals (Alsina & Nelsen, 2006). Thanks to the 

technological developments realized at this point, the materials created with dynamic software played an important role in 

bringing clearer, precise and meaningful proofs to the fore. From these points, in this study, it is considered important to express 

and prove the identity of the difference of two squares, which is expressed for the square, which is itself a regular polygon, for 

regular polygons with n sides, especially equilateral triangle and regular pentagon. In addition to the fragmentation used in the 

proofs for the square, a visual proof is made using a new fragmentation method used for the regular polygon with n sides. 

Visualization & Proof with GeoGebra 

For learning processes, visualization is extremely important for concretizing abstract data. At this point, in addition to concrete 

objects in classroom learning, digital objects, platforms and software come to the fore in the 21st century. Technological 

developments have made it possible to use dynamic visualization in mathematics learning classrooms (Zhang et al., 2023). Many 

studies have noted the link between the integration of dynamic visualization into instruction and students’ progress and 

performance in learning mathematics (Liang & Sedig, 2010; Ziatdinov & Valles, 2022). GeoGebra is an open source dynamic 

visualization software package used in many studies. (Zulnaidi et al., 2020). GeoGebra and dynamic visualizations were found to 

play an important role in providing external representation, deepening information processing, engaging students’ interest, 

problem solving and innovative thinking (Granberg & Olsson, 2015). Chan and Leung (2014) conducted a systematic meta-analysis 

and concluded that teaching based on dynamic geometry software such as GeoGebra is important for improving students’ 

mathematics achievement. More recent studies have also shown that translating between representations through digital 

software, such as GeoGebra, can lead to higher levels of student understanding of mathematical concepts (Johnson, 2022; Kohen 

et al., 2019; Zulnaidi et al., 2020). Kohen et al. (2019) stated that dynamic visualizations can be adopted as tools to concretize 

learning materials and ensure students’ active participation. GeoGebra has also been shown to be applicable to mathematics 

teaching and learning (Baye et al., 2021). Dynamic geometry software such as GeoGebra contributes to and improves the ability 

to make proofs as well as visualization in mathematics learning processes. Among the many technological tools used to support 

students’ mathematics learning, GeoGebra is a leading dynamic mathematics software for learning and teaching mathematical 

proofs (Balacheff & de la Tour, 2019). Regarding the use of technology, students can be encouraged to evaluate existing software 

such as GeoGebra in the teaching and learning process to be used in the evaluation of proofs (Sümmermann et al., 2021).  

Aim of Study 

The aim of this study is to generalize by showing that the identity of the difference of two squares, which is expressed and 

proved in different ways for the square, which is itself a regular polygon, is valid for other regular polygons as well. In addition, the 

proofs are to observe the dynamic change of the visuals created depending on the n number of sides of the polygon with the 

GeoGebra program, which is a dynamic geometry software. The purpose of this proof is to deal with geometric thinking with the 

help of cognitive processes, as Duval (1998) stated. 

METHOD 

In this study, direct proof method was preferred based on the principle of conservation of measure (conservation of area), 

which is one of the basic principles of teaching geometry, namely “different geometric shapes with the same area can be created 

by dividing a geometric figure into smaller pieces according to some properties and combining the obtained pieces”. Thus, with 

the direct proof method and GeoGebra, a dynamic geometry software, a new perspective was brought to the proof of the identity 

of the difference of two squares.  

FINDINGS 

Aslaner and Ilhan (2018) showed that an identity valid for right triangles, expressed for square and known as the Pythagorean 

relation, is also true for other regular polygons. Again, the correctness of the following proposition, which is an identity and 

expressed for the square, aroused curiosity. 
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Proposition 1 

The proposition “for every real number a and b, a2-b2=(a-b)(a+b)” is known in the literature as the difference of two squares. 

The truth of this proposition is shown geometrically in Figure 1. 

Proof 

The difference of two square quadrilaterals ABCD and AEFG with side lengths a and b units is the polygon BCDGFE. This polygon 

is broken up by the line segment [CF], as shown in Figure 1 and converted into a parallelogram or rectangle with the same area as 

the reflection, rotation, and translation movements known as geometrical transformations (Figure 1). 

 

Figure 1. Difference of two squares (Source: Authors’ own elaboration, using GeoGebra software) 

This rectangle is a rectangle with side lengths (or parallelogram’s side length and its height) (a-b) and (a+b), and its area is (a-

b)(a+b). The difference of the areas of the quadrilaterals is a2-b2, and these two expressions are equal to each other. So the 

proposition given is true. 

Now let’s express this proposition for other regular polygons and show that it is true. 

Proposition 2 

The equation a2-b2=(a-b)(a+b) is valid for all regular polygons with side lengths a and b (a >b). 

The correctness of the proposition was tried to be proved in GeoGebra, a dynamic geometry software, with the help of visuals. 

In order to show that this proposition is true, firstly, it is expressed how to create an n-sided regular polygon with a side length in 

computer environment with dynamic software. For this, it is necessary to know the basic concepts and some properties of regular 

polygons. Polygons with congruent sides and angles are called regular polygons. According to this definition, equilateral triangle 

and square are regular polygons. 

Basic elements and properties of regular polygons: 

➢ Every regular polygon has a center point. 

➢ This point is the intersection point of the mid-perpendicular lines of the polygon. 

➢ The polygon has a circle passing through its vertices. 

➢ This circle is called the circumcircle of the polygon. 

➢ Each regular polygon consists of n isosceles triangles, with the center point being the common vertex. 

➢ The vertex angle of these triangles is called the central angle of the polygon. 

➢ The measure of a central angle is 360o/n.  

A regular polygon with n sides given an edge length is created in the dynamic software GeoGebra by applying the following 

steps. 

➢ With the slider option for the number of sides, an integer variable n and a positive variable a for the side length are created. 

➢ A line segment [AB]: f is drawn with the line segment tool of given length. 

For the sides to be congruent, 

➢ This line segment is projected to point B and the line segment f’ is found. 

For the measure of the exterior angle of the polygon to be drawn, 

➢ An α angle is defined by typing 360o/n on the input screen. 

This angle is also the central angle of the polygon. 

➢ The line segment f’ is rotated around the point B by an angle of α and the line segment f’’ is found. 

This line segment is the second side of our polygon. 
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➢ The mid-perpendicular lines of these two sides are drawn and the intersection point is taken as the center point C. 

➢ The line f’’’ is obtained by rotating the side f’’ around C by α. 

This line segment is the third side of our polygon. 

If this process is repeated n-3 times, the desired polygon will be drawn. To do this, go to the home screen, 

➢ List L1 is created by writing array (rotate [f’’, i α, C], i, 1, n-3), and a regular polygon with n sides is drawn (Figure 2). 

 

Figure 2. Formation of regular polygons (Source: Authors’ own elaboration, using GeoGebra software) 

In the window opened with the create new tool option from the tools menu of the program, the polygon (list 1) is transferred 

to the output objects area. When next is called, n and a numbers and point A are seen in the Input Objects field. A new tool symbol 

appears at the end of the program’s menu list when a name (nSRP) is written instead of the tool name in the window that opens 

when it is called next. By clicking this tool, n and a are written respectively on the lines opened, and if a point is selected in an 

appropriate place on the screen, an n-sided regular polygon with a side length a unit will be drawn, starting at the selected point 

A. Here, by changing the number of sides of the polygon with the variable n, the size of the polygon with the variable a, and its 

location with the point A, a regular polygon with the desired size and number of sides is drawn in the desired environment. In the 

light of this information, the correctness of proposition 2 can be shown, as follows, starting from the simplest regular polygon, 

the equilateral triangle;  

for n=3; 

The difference of triangles ABC and AED with side lengths a and b given below is the trapezoid BCDE (Figure 3).  

 

Figure 3. Difference region of two equilateral triangles (Source: Authors’ own elaboration, using GeoGebra software) 

The area of this trapezoid is the midsole multiplied by the height, 𝐴 =
𝑎+𝑏

2
× (𝑎 − 𝑏) sin 60 =

√3

4
(𝑎 − 𝑏)(𝑎 + 𝑏). Difference in 

the areas of the triangles is 
√3

4
𝑎2 −

√3

4
𝑏2 =

√3

4
(𝑎2 − 𝑏2) and from the equality of these two expressions, for each real value of a 

and b; a2-b2=(a-b)(a+b) obtained.  

for n=5; 

The difference of ABCDE and AFGHI pentagons with side lengths a and b units given below is the polygonal region FB … G given 

in Figure 4.  
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It is difficult to break up this region as in a quadrilateral and turn it into a parallelogram or rectangle. Therefore, it is necessary 

to create a different shredding technique. Instead of having a common vertex and parallel sides as in Figure 4, polygons are placed 

so that their centers are common, and their sides are parallel. 

For this, the following steps should be applied in the GeoGebra program. 

The polygon to be created;  

➢ For the number of sides, an integer variable n greater than three and a positive variable a for the side length are created 

with the slider tool. 

➢ A line segment [AB]: f is drawn with the line segment of given length tool. 

➢ This line segment has the middle perpendicular line and the midpoint C. 

The center point of the polygon should be on this line. For the central angle of the polygon, 

➢ An α angle is defined by typing 360o/n on the input screen. 

➢ By drawing the line AB, this line is rotated around the point A by 90-α/2. 

➢ The intersection point of these two lines is the center point of the D point polygon (Figure 5).  

 

Figure 5. Isosceles triangle (Source: Authors’ own elaboration, using GeoGebra software) 

Triangle ABD is an isosceles triangle with apex α, base angles 90-α/2, side lengths 𝑏 =
𝑎

2 sin
𝛼

2

 and base height 
𝑎

2
= cot

𝛼

2
. So it has 

𝑠(𝐴𝐵𝐷) =
𝑎2

4
cot

𝛼

2
 area. 

➢ With the regular polygon tool, draw an n-sided polygon with one side [AB] (Figure 6). 

 

Figure 4. Area difference in regular pentagons (Source: Authors’ own elaboration, using GeoGebra software) 
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This polygon consists of n isosceles triangles, with D being their common vertex.  

➢ Other triangles can be drawn by rotating triangle ABD about D point (n-1) times. For this; 

➢ Array (rotate [ü2, i α, D], i, 1, n-1) should be written on the input screen (Figure 7).  

 

Figure 7. Segmented regular polygon (Source: Authors’ own elaboration, using GeoGebra software) 

The area of this polygon 𝐴1 = 𝑛𝑠(𝐴𝐵𝐷) =
𝑛

4
cot

𝛼

2
𝑎2. 

 Let’s construct a second polygon whose central point D has sides parallel to this polygon and one side length b units (0≤b≤a). 

For the side length of the second polygon, 

➢ A variable b, ranging from 0 to a, is created with the slider tool. 

➢ C (b/2) circle with center C and radius b/2 is drawn, with C being the midpoint of [AB] (Figure 8). 

➢ From the point H, which is the intersection point of this circle with the line AB, the line perpendicular to AB is drawn. 

➢ The intersection point of this point with [AD] is I, and the reflection of I’ with respect to the middle perpendicular line is 

found I’. 

➢ The polygon drawn by taking one side [II’] with the regular polygon tool is the second polygon (Figure 8).  

 

Figure 6. Formation of regular polygons (Source: Authors’ own elaboration, using GeoGebra software) 
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Figure 8. Second regular polygon (Source: Authors’ own elaboration, using GeoGebra software) 

Area of this polygon is 𝐴2 =
𝑛

4
cot

𝛼

2
𝑏2 also and the area of the region that is the difference of the two polygons is, as follows: 

 𝐴 = 𝐴1 − 𝐴2 =
𝑛

4
cot

𝛼

2
(𝑎2 − 𝑏2). (1) 

➢ Create trapezoid ABII’ with the Polygon tool (Figure 9).  

 

Figure 9. Trapezoid that creates a difference area (Source: Authors’ own elaboration, using GeoGebra software) 

This trapezoidal base lengths a and b are an isosceles trapezoid with height ℎ =
𝑎−𝑏

2
cot

𝛼

2
, the area of which is the midsole 

multiplied by the height, 𝐴𝑦 =
1

4
cot

𝛼

2
(𝑎 − 𝑏)(𝑎 + 𝑏). 

The region that is the difference of the two polygons consists of the union of n trapezoids. These trapezoids can be transformed 

into a trapezoid if n is odd, and a parallelogram if n is even, by applying reflection, rotation and translation movements, briefly 

called geometric transformations (Figure 10).  



8 / 12 Aslaner & Ilhan / Pedagogical Research, 9(2), em0199 

 

Figure 10. Area formed by combination of trapezoids (Source: Authors’ own elaboration, using GeoGebra software) 

The area of this trapezoid (or parallelogram): 

 𝐴 = 𝑛𝐴𝑦 =
𝑛

4
cot

𝛼

2
(𝑎 − 𝑏)(𝑎 + 𝑏). (2) 

The area of the difference region is equal. From these two equations, it can be said that the a2-b2=(a-b)(a+b) identity expressed 

for each real numbers a and b is valid for all regular polygons as well. 

Depending on the selected edge length a in the geometric drawings of the proposition given in this illustration, the figure 

becomes quite large as the number of edges increases. To avoid this growth, the polygon can be confined to the circumcircle. In 

other words, the growth of the figure can be prevented by connecting the side length of the polygon to the radius of the circle. For 

this, a radius variable r, a variable dependent on the radius, and b a variable smaller than a; let us show that statement 2 is true.  

For this, the polygon;  

➢ An integer variable n, starting from three, is created for the number of sides. 

➢ An α angle is defined by typing 360o/n on the home screen for the center angle. 

➢ A positive variable r is created for the radius length. 

➢ A circle A(r) with origin center and radius r is drawn (Figure 11).  

 

Figure 11. Formation of a regular polygon depends on a & r (Source: Authors’ own elaboration, using GeoGebra software) 

For the intersection point B of this circle with the y-axis, there are points B’ and B’’. 

The base length of the isosceles triangle AB’’B’ depends on the radius from Figure 10 𝑎 = 2𝑟 sin
𝛼

2
.  

➢ If the regular polygon tool is selected and the points B’’ and B’ are clicked, an n-sided regular polygon with one side length 

unit and the radius of its circumcircle is r will be drawn.  

This regular polygon consists of n isosceles triangles with vertex center point, vertex angle α, base length, and side lengths r. 

To draw these triangles, 
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➢ Array (rotate [ü1, i α], i, 1, n-1) should be written on the input screen. 

➢ A second polygon with a side length b is drawn by creating a variable b that varies between zero and a (Figure 12). 

 

Figure 12. Regular polygon with b sides (Source: Authors’ own elaboration, using GeoGebra software) 

The difference of these two polygons consists of n trapezoids with base lengths a and b (Figure 13).  

 

Figure 13. Difference area of two polygons (Source: Authors’ own elaboration, using GeoGebra software) 

When these trapezoids are combined in one place by applying reflection, rotation and translation movements, briefly known 

as geometric transformations, a trapezoid is obtained if n is odd, and a parallelogram if n is even (Figure 14).  



10 / 12 Aslaner & Ilhan / Pedagogical Research, 9(2), em0199 

The area of this trapezoid (or parallelogram) is equal to the difference of the areas of the two polygons. Therefore, it can be 

said that the two square difference identity expressed for the square is also true for other regular polygons. In regular polygons, 

as the number of sides increases, the polygon resembles a circle, and the polygonal region resembles a circle. For this reason, it is 

possible to use the formulas obtained by using sides and angles in polygons for circles without sides and corners and similar 

concepts. Accordingly, the same proposition can be expressed for the area of the annular region formed by taking two circle 

segments with the same center but different radii, instead of the trapezoid formed by taking the difference of two isosceles 

triangles with the same vertices and different side lengths (Figure 15).  

 

Figure 15. Transition from polygon to stripe space (Source: Authors’ own elaboration, using GeoGebra software) 

As n increases, the area of the trapezoid (or parallelogram) and the area of the strip converge. For n infinity, the difference is 

zero and the areas are equal to each other. Therefore, it can be said that the equation expressed and shown to be true for two 

regular polygons with different side lengths is also true for two circles with different radii. So before; 

“Two equations with side lengths a and b (a>b), a2-b2=(a-b)(a+b) are also valid for all regular polygons.” 

Proposition 2 expressed, as follows: “Equation a2-b2=(a-b)(a+b) is valid for any two circles with radii a and b (a>b).” proposition 

can be brought to the literature.  

DISCUSSION & CONCLUSIONS 

As a result of enriching the teaching processes with dynamic software and digital materials, the proofs made with the help of 

visuals are becoming increasingly common day by day. The use of proofs in other learning areas, especially in mathematics 

education, has played an important role in the realization of meaningful learning. As a matter of fact, Hanna and Sidoli (2007) 

stated that visualization has positive contributions to the understanding of proofs. Visualization and proving in this way not only 

contributes to meaningful learning, but also helps to establish a cause-effect relationship. At this point, Malaty (2001) stated that 

visualization supports thinking based on cause-effect relationships and said that the ways of making mathematical meanings with 

visualization should also be taught. The basis of research on geometry, which is an important learning area of mathematics, lies 

in drawing and visualizing geometric concepts and creating generalizations based on these visuals (Kose, 2008). Hanna and Sidoli 

(2007) stated that the use of visualization in proof processes in mathematics education, where teaching with many geometric 

 

Figure 14. Whether n is odd or even (Source: Authors’ own elaboration, using GeoGebra software) 
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concepts is carried out, has a positive contribution to the understanding of proofs. Along with this study, there are many studies 

that talk about the role of visualization in mathematics teaching (Amrhein et al., 1997; Arcavi, 2003; Malaty, 2001; Tall, 2004). 

Identities, which are frequently used in the field of learning algebra in mathematics, are sometimes proved with the help of 

geometric shapes and visuals. For the difference of two squares, which is one of these identities, two squares are drawn in general 

and visual proofs are made with the help of their areas. There are studies in the literature that use the classical visual proof of the 

difference of two squares calculated by square areas (Ozdemir et al., 2005; Yilmaz et al., 2016). However, it is crucial for meaningful 

learning to evaluate different drawing methods instead of using a single classical method while making these visual proofs. 

Ozdemir et al. (2005) stated that in the difference of two squares, it is necessary to first understand what the expression x2-y2 means 

geometrically. In this direction, in this study, the area relation expressed for the square difference identity of two squares is 

introduced and it is shown by the method of direct proof by creating different geometric shapes that it is also valid for other regular 

polygons and circle areas. The drawings given while making these proofs were created in the GeoGebra program. As a matter of 

fact, there are many recent studies in the literature stating that the GeoGebra program has significant contributions on 

visualization and proof in learning processes (Balacheff & de la Tour, 2019; Baye et al., 2021; Kohen et al. 2019; Sümmermann et 

al., 2021; Zhang et al., 2023; Ziatdinov & Valles, 2022). By developing a new fragmentation technique on the difference identity of 

two squares, correct results are obtained by using the formulas obtained for regular polygons such as triangle, square and 

pentagon, also for circles without sides and corners.  

Limitations & Recommendations  

The study is limited to the visual proof of two square difference identity using polygon areas in GeoGebra software. Within the 

framework of the results obtained in the research, the following suggestions can be made to researchers who want to work on this 

subject in the future:  

1. In this research, a new visual proof is made for the difference of two squares, which is a type of identity. New proofs can be 

developed for other similar identities as well. 

2. Considering the contribution of visualization to meaningful learning, such proofs can be integrated into teaching processes 

with GeoGebra software. 

3. Studies that include new technological proofs can be done with augmented and virtual reality applications. 

4. The effect of dynamic geometry software such as GeoGebra on the development of such proofs can be evaluated through 

action or experimental research. 

5. The contribution level of meaningful dynamic software to learning can be determined by creating teaching averages in 

which such applications are made. 
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